Building earthquake-proof schools in Nepal

The 2015 earthquake in Nepal was devastating. 9,000 people died, 3.5 million were left homeless and whole communities were flattened.

Our Civil Engineers have been working with local experts, the Government of Nepal, the Universities of Kathmandu and Tribhuvan, Arup International Development, NSET, Save the Children and school pupils in Nepal to save lives by making buildings and communities safer – starting with schools.

The project, led by Professor Anastasios Sextos, combines cutting edge research and laboratory-based testing with co-produced solutions developed with and by communities in Nepal.

For the project to succeed the solutions must be affordable, locally-sourced and acceptable to local people. During the last field trip our researchers spoke to lots of Nepalese people who witnessed the devastation caused by collapsed buildings in the 2015 quake.

We’re using our seismic shaking table to see how replicas of Nepalese classrooms, strengthened using novel yet cost-effective techniques, perform in earthquake conditions. ~We are also developing a simple, state-of-the-art phone app that lets local engineers identify at-risk schools and make them safer while facilitating informed decision making at a central level.

All our research is supported by workshops and on-site training so, aided by our local and international partners, we’re leaving behind the skills and expertise for communities to rebuild Nepal safely.

The team are heading out to Nepal again in April and will be updating us on this exciting project.

Using sound waves to detect deadly diseases

Professor Bruce Drinkwater and acoustic levitator

Professor Bruce Drinkwater and his colleagues in Brazil are using acoustics to detect disease. Their collaboration was one of the six projects shortlisted in the Brazil category for the prestigious 2018 Newton Prize.

Sand fly biting skin
Sand flies transfer the parasites that cause Leishmaniasis
Bruce believes that new technology is the key to tackling the challenges of disease and poverty. He said, “As an engineer, working with the end-users of this technology, this is an area where I can make a difference. Leishmaniasis is a tropical disease that’s endemic in 97 countries. More than a million new cases occur each year world-wide and without early diagnosis, people are at risk of disability and death.  Parasites, transferred by sand-fly bites, cause ulcers of the skin, mouth and nose with skin lesions resembling leprosy. Unchecked, infections can be life-limiting, leading to horrific disfigurement, fever, loss of red blood cells and an enlarged spleen and liver.”  

Bruce is working with Professor Glauber Silva from the Federal University of Alagoas in Brazil.

Regular communication is crucial in this interdisciplinary project. Here Professors Silva and Moreira in Brazil discuss the experimental results of a new diagnostic device in a video link to Professor Drinkwater in the UK.
The team have made some fantastic breakthroughs in the area of disease detection: “We are developing small and robust prototype acoustic devices that have the potential to detect Leishmaniasis. The lab-on-a-chip devices use acoustic forces to sort and sense thousands of cells, or other microscopic objects, simultaneously. In Leishmania, the infected cells (macrophages) have different mechanical properties from healthy cells. We can exploit this difference in various ways, sorting diseased from healthy cells is just one. The devices can also help detect antibodies in blood and antigens in urine samples by concentrating them with ultrasonic forces. This leads to more rapid diagnosis and monitoring of the disease.

If successful, theses devices could have a huge impact on the lives of those in Brazil and other developing countries: “Leishmaniasis  is one of the NTDs that lag far behind HIV/AIDS, tuberculosis and malaria when it comes to research funding. It affects 20,000 people each year in parts of Brazil where poverty, overcrowding and inadequate sanitation are major risk factors. If we can have an impact on Leishmaniasis, the same techniques could be used against other NTDs, transforming outcomes for some of the world’s most disadvantaged people. “

If we can have an impact on Leishmaniasis, the same techniques could be used against other neglected tropical diseases, transforming outcomes for some of the world’s most disadvantaged people.

“These devices are undergoing testing by Brazilian biomedical researchers working on neglected tropical diseases (NTDs) with promising results. After further development of the devices, the next phase will be field trials in hard to access areas where help is most needed.

More information

Newton Fund:
The Newton Fund was launched in 2014 to promote economic development in countries eligible for official development assistance (ODA). A grant from the Newton fund and the Royal Society made possible Bruce’s research partnership with Professor Glauber Silva from the Federal University of Alagoas in Brazil, enabling them to bring together a multidisciplinary team with expertise in engineering, physics and biomedicine.

https://www.newtonfund.ac.uk

https://en.wikipedia.org/wiki/Leishmaniasis  (Content note: graphic images depicting disease)

World Toilet Day: In celebration of the toilet

For World Toilet Day we spoke to Gro Slotsvik, Global Challenges Research Manager for the Faculty of Engineering, about the importance of toilets and how engineers are working with local communities around the world to create global access to clean water and sanitation. 

“It’s one of the less glamorous parts of life. You’ll spend some part of your day, every day, in its company. You probably rarely think about its positive impact on your life. The humble toilet, does not get the attention it deserves.

“So opens the Water & Sanitation session of day three of the Global Engineering Congress in London. Over 2500 participants from 82 countries are finding new ways to achieve the UN Sustainable Development Goals (SDGs) together. There are civil, electrical and mechanical engineers, policymakers, research councils, UN agencies, charities, development organisations, artists and lawyers. And there is a buzz in the air.”

The sanitation challenge

“As the world tackles poverty, climate change and providing education for all, poor sanitation is stalling progress. Worldwide, 2.4 billion people do not have access to basic sanitation services, like toilets. Poor sanitation causes the deaths of over 1,200 children under five, every day. In 2016, inadequate sanitation and hygiene were the cause of more than half a million deaths from diarrhoea alone. A lack of toilets and latrines affects education, health, economic development and our environment.

“The toilet, our unsung hero of sanitation, has a key role to play in achieving the SDGs. None of the other Goals, on equality, poverty and climate action, can be achieved without achieving Goal 6. This Goal states that by 2030 all people should have access to clean water and sanitation. We need toilets to save the world.”

The solutions

“There is no quick fix when it comes to toilets. The toilet that works well in rural Somerset is unlikely to work in rural Sudan. Differences in water levels, space, number of people using the same toilet and how hot, cold, dry or humid the climate is mean that different places need different things. The challenges are diverse and so the solutions need to be too.

“Sanitation for all cannot be achieved without engineers who understand the local context. At the University of Bristol, our engineers are addressing the SDGs in partnerships with local communities and researchers. When we help create earthquake resilient schools in Nepal, map waterborne infectious diseases in the Congo or build sustainable energy systems for refugees in Rwanda, we do so with those who know the conditions best.

“In the case of making sure the world has access to clean water and sanitation, it starts with the humble toilet. Next time you see one, consider giving it a nod of thanks. Much like the engineers fixing sanitation all over the world, it’s a lifesaver.”

More information

Engineering for International Development
The Faculty of Engineering runs a number of international developmental projects across Latin America and the Caribbean, sub-Saharan Africa and Southeast Asia:

Geothermal energy production in Cornwall- Is it viable?

Today marks the start of drilling for what may become the first deep geothermal power plant in the UK. Falmouth based firm Geothermal Engineering are drilling two wells, 2.8 miles (4.5km) and 1.5 miles (2.5km), into granite near Redruth, Cornwall.

Cold water will be pumped down to the hot rocks where the temperature is up to 200C (390F). Hot water will be brought to the surface. Steam from the heated water will drive turbines producing electricity. If this pilot project is successful it could pave the way for similar power production in the UK.

Professor Joe Quarini from the department of Mechanical Engineering shared his thoughts on the project:

Professor Joe Quarini talks to Jon Kay from the BBC

“This is a good and exciting project from an engineering perspective. Not only will it bring jobs and expertise to Cornwall, but we’re going to learn a lot about engineering as the work progresses. We’ve seen similar, but ‘easier’ projects work successfully in New Zealand, Iceland and Italy. There are some technical questions that will be answered during this pilot, like, whether there are significant fouling issues associated with leaching out soluble minerals from the underground structures, what proportion of the water pumped into the ground actually comes back and whether and at what rate the heat deposits are depleted.

The answer to these questions will dictate the long-term viability of geothermal energy production in the UK. Cornwall is unique, it has heat-producing granite rocks with the highest energy density in the UK. In terms of absolute sums, electrical power production from geothermal is likely to be a small proportion of the Nation’s needs; it best location will be Cornwall. That said, Engineering is a global discipline, so it’s great for our young engineers to get the opportunity to see projects like this in action. We know that young people are really interested in green energy and sustainability so hopefully this will get more young people interested in Engineering as a subject.

Whilst the project excites me in terms of Engineering, I’m less confident about the long-term economic viability of geothermal energy in the UK. When the engineering costs are accounted for, geothermal energy isn’t the cheapest source of power, but if we’re serious about decarbonising our economy then it’s a choice that we, as a society, can make. That’s where funders like the EU and the Government come in to help subsidise projects like this one. My worry is that when those sources of funding aren’t available this won’t be a very attractive prospect to private investors. I’d love to be proved wrong on this though!”

Hear Joe in conversation on BBC Radio 4’s Today Programme at 1:21

Nine ways our engineers are building a greener world

It’s Green Britain Week this week. While debate rages between environmental campaigners and those wandering the corridors of power, engineers are ever pragmatic and practical. Our researchers are working on a range of technological advances that will reduce the carbon in our atmosphere.

Here’s nine of our projects:

  1. Wind power: Harnessing wind power will be a key component of a greener energy mix. In partnership with Offshore Renewable Energy, the Wind Blade Research Hub is pushing the boundaries of current technology to produce a 13MW turbine. They are working on blades that will be 100m long, requiring new designs, materials and manufacturing processes. The world-leading expertise of the Bristol Composites Institute (ACCIS) is crucial in delivering this and other sustainable structures.
  2. Offshore wind and tidal lagoons: In another initiative to tap into the UK’s potential for offshore wind and tidal energy, a proposed tidal lagoon in Swansea Bay could provide electricity for more than 155,000 homes. It will take a solution that is affordable and scaleable to turn this idea into a reality. Researchers from Bristol and Plymouth Universities are part of a project to design and develop a prototype.
  3. Solar Cells: Solar energy is getting ever-more affordable. A £2 million grant from the EPSRC has funded work to develop new low-cost photo-voltaic materials. Researchers from the Bristol Electrochemistry Group’s PV Team are looking to replace elements such as gallium, indium, cadmium and tellurium which are rare, expensive to extract and toxic.
  4. Electric Vehicles: The move away from petrol/diesel and towards low carbon hybrid/fully electric vehicles depends on the availability of compact, highly efficient engines. The Electrical Energy Management Group are innovating and testing solutions. Their industrial collaboration on high performance electro-mechanical drives is important for the traction, steering and road handling of the cars of the future.
  5. Energy Storage: If the sun is shining and the wind is blowing, how can we store all that free energy? This question is being addressed by researchers from the Universities of Bristol and Surrey as part of self-funded company Superdielectrics Ltd. They have discovered new hydrophilic materials, like those used in contact lenses, that could rival the storage capacity of traditional batteries and charge much faster. Rolls-Royce recently signed a collaboration agreement with Superdielectrics, highlighting the keenness of industry to find new solutions.
  6. Microgrids: Ditching fossil fuels and halting deforestation can’t happen unless there’s a sustainable energy alternative. It’s estimated that 1.2bn people across the world don’t have access to electricity. By working with NGOs, local authorities and residents in rural areas, researchers from the Electrical Energy Management Group are designing a micro-grid system, intended for remote communities. It could generate enough power for 250 homes, using wind, solar and micro-hydro energy. A scaleable modular design means extra units can be added as and when.
  7. Water management: Climate change is having an impact on our water cycle with flood patterns already changing. The way we manage water resources will be increasingly key to mitigate natural disasters and provide clean drinking water to a growing population. The Water and Environmental Engineering group brings together engineers and scientists, taking a multi-disciplinary approach to the complex issues raised through modelling, measuring and prediction.
  8. Nuclear: Although controversial, nuclear energy will be part of the low carbon energy picture for the foreseeable future. The South West Nuclear Hub brings together academics from numerous disciplines. Their research ensures that nuclear systems are safe, reliable and efficient. Also focusing on safety, the department of Civil Engineering has been exploring the seismic integrity of nuclear reactors using the University’s impressive earthquake shaking table. The Plex project was one of the most complex shaking table experiments ever attempted anywhere in the world.
  9. Efficient Aircraft: Aviation is a major contributor to global CO2 emissions, burning more fossil fuels per passenger than any other form of transport. The Advanced Simulation and Modelling of Virtual Systems (ASiMoV) partnership aims to produce a jet engine simulation so accurate that designs can be signed off by the civil aviation authorities pre-production. It is hoped that by modelling the physical effects of thermo-mechanics, electromagnetics and computational fluid dynamics, more cost effective and energy-efficient engines will get off the ground.